

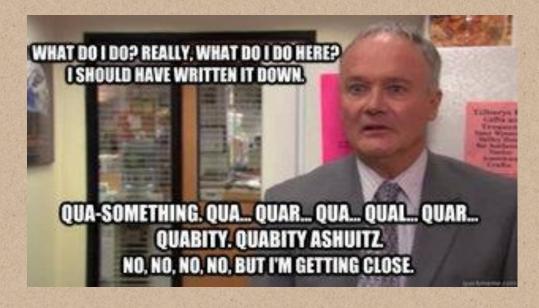
STONE BREWING CO.

Intro to Professional Brewing Quality Assurance

Rick Blankemeier Quality Assurance Manager Stone Brewing Co

What is Quality?

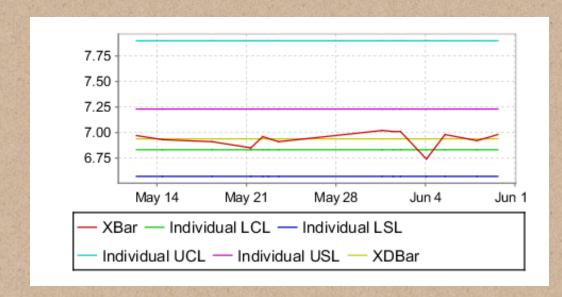
- Quality
 - the degree of excellence of something
- Keeping our beer consistently awesome


Quality Control

- Quality Control
 - Reactive
 - Needs specifications
 - Allow or deny product release

Quality Assurance

- Quality Assurance
 - Proactive
 - "Right the first time"
 - Ultimate goal is to reduce the number of defects
 - You can only fix what you can measure


Quality Management

- Quality Management
 - Incorporates both QC and QA into a robust quality program
 - Quality program in place to direct testing
 - Stone's 3-pronged approach:
 - Analytics
 - Microbiology
 - Sensory

Analytics

- Analytics
 - Utilizes instrumentation
 - Acquire Data from Process
 - Trends data
 - Control limits
 - Statistical ProcessControl (SPC)

Microbiology

- Microbiology
 - How clean is the process?
 - Samples samples samples
 - Yeast wrangling



Sensory

Sensory

- Utilizes the human palate to determine quality of product
- "Quantifying the subjective"

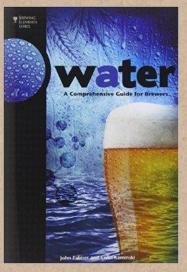
EKG Redsell #7165

Essential Equipment

- Starter QC Equipment
 - Microscope (need 40x)
 - Hemacytometer
 - Methylene/Trypan Blue
 - pH Meter
 - Stir Plate/Shaker Plate
 - Hydrometers
 - Thermometers
 - Dissolved Oxygen Meter
 - Hach Orbisphere 3100
 - Hamilton Beverly
 - Hach/Mettler High Range

- Other Recommended Equipment
 - Grist Sieve and Shaker
 - ATP Luminometer
 - Charm
 - Hygenia
 - Autoclave/PressureCooker
 - Centrifuge
 - UV-VisSpectrophotometer

Simple Tests


- Forced Fermentations
 - Helps determine the end gravity of fermenting beers within 24 hours
 - Accelerated Tank Force (XTF)
 - Added yeast cake
 - Tank Force (TF)
 - No added yeast, pulled directly off of the fermenter after 2-3 days of primary

Simple Tests

- Brewing and Process
 Water Testing
 - Using Titration
 - Hardness
 - Alkalinity
 - Chlorine
 - pH
 - Resource: Water by John
 Palmer and Colin
 Kaminski

Instrumentation

UV-Vis Spec

- Spectrophotometer
 - Measures absorbency of light through a substance at discrete wavelengths
 - Basically it finds how much "stuff" is in a medium like beer or wort
- Applications
 - Bitterness
 - Color
 - Free Amino Nitrogen (FAN)

Instrumentation

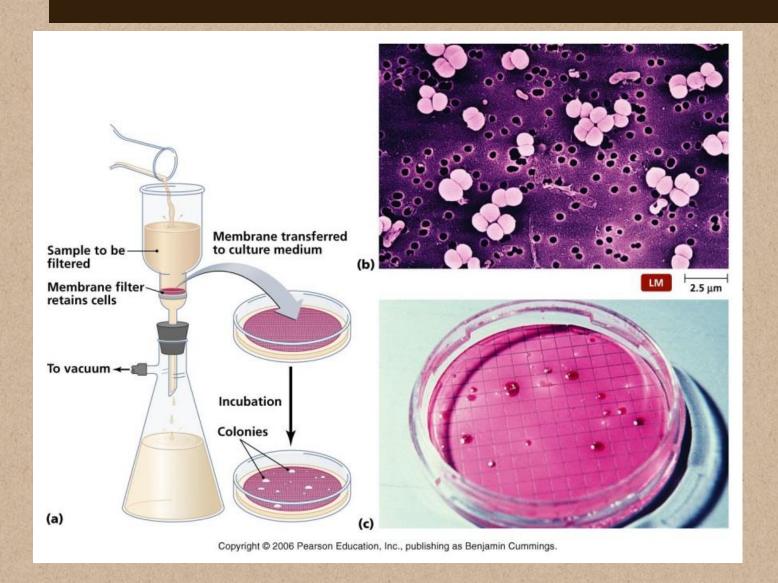
- Special Instruments
 - Anton Paar Alcolyzer
 - · What does it measure?
 - ABV
 - Gravity
 - Density

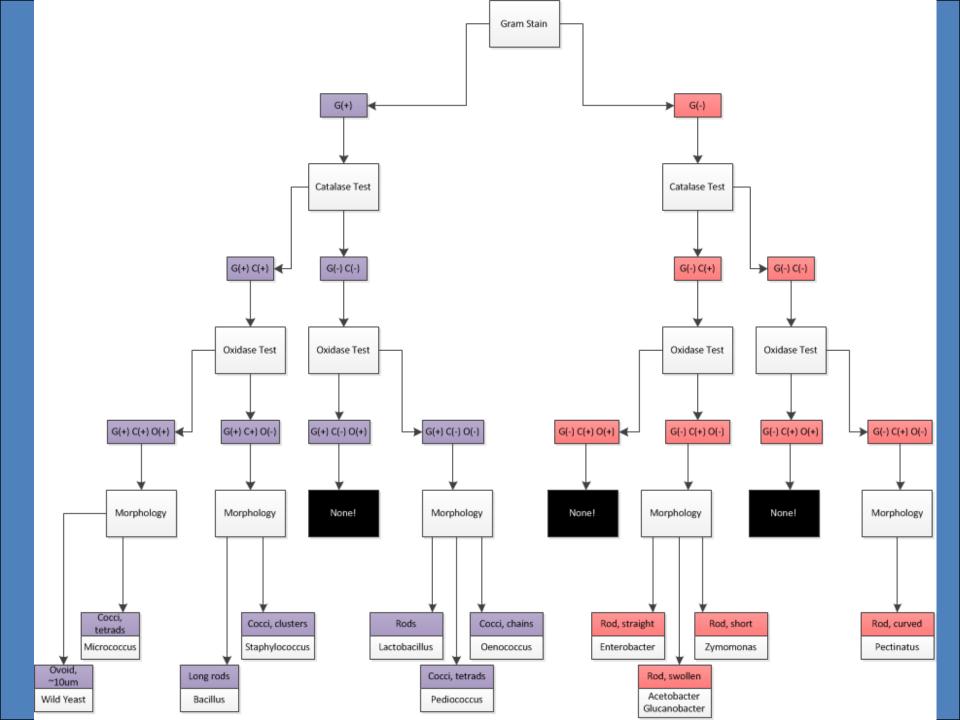
Special Instruments

- Gas Chromatograph
 (GC)
 - Gas is the mobile phase
 - Detects volatile compounds
 - Applications
 - Off-Flavor Detection and quantification
 - VDK (Diacetyl)
 - Acetaldehyde
 - Sulfur Compounds

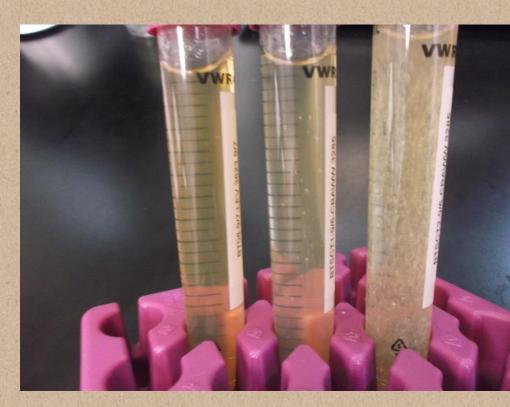
Microbes in Beer

- Some microbes that can live in beer can affect flavor or clarity. These are called beer spoilers.
 - Lactobacillus
 - Pediococcus
 - Pectinatus
 - Megasphaera
 - Acetobacter
 - Brettanomyces
 - Glucanobacter
 - Oenococcus
 - Zymomonas
 - Enterobacter
 - Lactococcus




Detecting beer spoilers: Robust sample collection

- How do we know whether or not our beer is infected with spoiling microbes?
 - We collect samples from all sorts of different processes to paint a thorough picture of the microbiological stability of the brewery. Our robust micro schedule includes the following samples:


Detecting beer spoilers: Membrane filtration

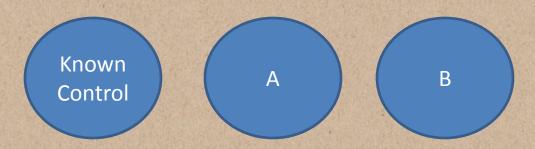
Detecting beer spoilers: Selective Media

- Some beer spoilers are difficult to grow, or can be indistinguishable from benign microbes using the above methods. Selective media can be utilized to weed out the "background" microbes.
 - SDA general
 - UBA made with beer
 - WLN yeast strains
 - LWYM wild sacch.
 - Cupric Sulfate wild non-sacch
 - MRS acid producing bacteria
 - HLP lacto & pedio
 - Bromocreosol green
 - Cyclohexamide

Why?

- We make a product (beer) that is supposed to be tasted by humans
- The human palate is more sensitive than any piece of fancy analytical equipment we can buy
- Beer flavor consistency
- Detect process changes

- Biggest Problem Human Bias
 - Sensory is a battle against human psychology
 - Humans aren't robots (yet)
 - Numbers
 - Other humans
 - Ego
 - Prior Knowledge
 - Mood
 - Fatigue


- Primary Sensory Goal
 - To turn panelists into beer tasting cyborgs
- Easy right?
 - Training first —> we'll talk about that later

- Types of Sensory Testing
 - Triangle Testing
 - Helps with process change validation or off-flavor threshold testing
 - Two control samples and one test sample
 - Goal is to pick the different sample
 - All samples are unknown to panelists

- Types of Sensory Testing
 - Duo-Trio Test
 - Helps with process change validation
 - Less intimidating than triangle testing, but less statistically relevant
 - One known control sample and unknowns A and B –
 one of which is the control sample. Pick the test

Who is the Real QC Judge?

- · Consumers!
 - Final QC inspector
 - Package defect
 - Flavor defect
 - Storage defect
 - Feedback
 - Positive
 - Negative

Additional Resources

- Professional Organizations
 - American Society of Brewing Chemists (ASBC)

Master Brewers
 Association of the
 Americas (MBAA)

- Brewers Association
 - Quality Sub-committee

Questions?

