Berliner and Beyond Sour Mashing and Its Applications •

Derek Springer National Homebrewers Conference

Vegan Warning!

Sample #1: Extract Berliner

- * 23A. Berliner Weisse
- * 100% Bavarian Wheat DME
- Kettle soured w/ bacteria cultured from kefir yogurt (pH ~3.4)
- ~5 IBU Hallertauer
- * WLP090 San Diego Super

Thanks for Coming!

Who Is This Guy?

- Derek Springer
- San Diego native
- Society of Barley Engineers
- Brewing since 2005 (Earnestly since 2011)
- * www.fivebladesbrewing.com
- * @FiveBlades

Why Is He Here?

- * To many, sour beer seems like an impossible dream.
- * The time, equipment, and expertise required ensures that many view sour beer as a pastime for brewing elite.

My Mission

- * Do not despair, sour beer is within your grasp!
- * Sour mashing is a fast, easy method to making sours.
- This talk will discuss the tips and techniques to perform a successful sour mash and look at how any homebrewer, even extract brewers, can apply those techniques to a variety of styles.

I Tricked You!

Fast Lactic Souring / Hot Side Souring

"Sour Mashing"

- * I use sour mashing and kettle souring interchangeably.
- Mostly the same process with the same result.
 (Fast lactic souring)
- * Just choose the one that works best for you!
- * It might be worthwhile to choose kettle souring if you are souring a higher gravity recipe.

Story Time

- * "I'm attempting my first sour mashed Berliner this week. I added a handful of grains, covered it with a lid, and stashed it in my basement."
- * "It smells like a parmesan cheese soiled a diaper... is this normal?"

- * "I'm making my first Barleywine this week. I pitched a single (old) vial of yeast and stashed it in my garage during the summer."
- * "It stalled out at 1.040 and tastes like rocket fuel... is this normal?"
- * Bonus: "Does this look infected?"

See a Common Thread?

Don't Be Afraid!

So What Is Sour Mashing?

- The goal is simple: create an optimal environment for Lactobacillus bacteria and a suboptimal environment for spoiling organisms.
- Harness Lactobacillus' innate ability to convert lactose and other sugars to lactic acid.

Why Sour Mash?

Pros

- Fastest way to naturally create sour beer (the Berliner Weisse is just over two weeks old).
- * No extended period of ropy "sick" character (*Pediococcus*).
- * Fine control over sourness.
- * Hoppy sour beers.
- * Final beer can be "clean."
- * No need for "dirty" equipment.

Cons

- * Not impossible to create foul tasting and smelling wort.
- Wort pH < ~3.3 interferes with Saccharomyces fermentation.
- No chance for nuance from long-term sour process w/ diverse critters.
- Some folks don't consider it a "real" sour.

The Gist of Sour Mashing

Sour mashing requires only a small deviation from your normal routine and has three goals:

- 1. Create an optimal environment for Lactobacillus bacteria.
- 2. Create sub-optimal environment for spoiling organisms such as *Clostridium* and Indole producing bacteria.
- 3. Allow *Lactobacillus* to drop pH to produce desired amount of acidity/ sourness.

How Do We Do That?

- * Give the *Lactobacillus* a healthy head-start by pitching a large number of them. (Starter!)
- Keep the temperature ~110°F, within the optimum temp of *Lactobacillus* and above the range of other organisms.
 (Optimum temp range is 95°F 120°F)
- * Keep oxygen away, *Lactobacillus* is anaerobic and many competing organisms are aerobic.
- * Get the pH < 4.5 ASAP, few organisms thrive in low pH.

How Much?

- * Depends on how tart you want your beer to be.
- In terms of pH:

Sweet Spot

- $\star >= 4$ imperceptible
- * High 3's light crispness
- ★ ~3.5 refreshing tartness
- \star ~3.3 assertive sourness

 $\star <= 3$ - peel the enamel off your teeth sour

As % Of Grist

- *Lactobacillus* lowers pH <u>fast</u> so it can be hard to time it right.
 Experiment with souring only part of your grist and mixing it in post-mash / pre-sparge.
- * For percentage of grist:
 - * 10% adds crispness
 - * 25% light tartness
 - ★ 50% assertive tartness
 - ★ 100% express train to Sourville

Good Styles for Sour Mash

- Berliner Weisse
- * Gose
- Kentucky Common
 (BJCP 2015 sez: "not sour!")
- Saison/ Farmhouse
- Dry Irish Stout
 (Guinness allegedly sours
 ~3% of the grist to add bite)
- Lichtenhainer

- Crisp summer beers
- Bacteria-free sours
 (Focus on Brettanomyces -Brett is okay w/ low pH)
- Anything to which you want to add an "edge," but remain clean.

"When paired with an aggressive pre-boil souring technique [e.g. sour mash...] a 100% Brett fermentation is a good solution for making a complex sour beer without waiting as long as you would for a traditional mixed fermentation... Given the popularity of sour beers today, it is surprising that this is not a more common method."

-Michael Tonsmeire, American Sour Beers

Sample #2: Death Rides A Pale Horse

- * 28B. Mixed-Fermentation Sour (Kettle-soured, all-Brett pale ale-y thing.)
- * 65% 2-Row
 25% Wheat
 10% Flaked Rye
- Kettle-soured w/ lacto cultured from base malt (pH ~3.3).
- ~30 IBU Citra & Centennial in whirlpool and dry hop.
- * Pitched The Yeast Bay Amalgamation Brett blend.

What Is Lactobacillus?

- Gram-positive facultative anaerobic (preferring no oxygen) rod-shaped bacteria.
- Member of the lactic acid bacteria (LAB) group, which converts lactose and other sugars to lactic acid.

Sources of Lactobacillus

- * Two main sources of *Lactobacillus* we are concerned with:
- 1. Wild Lactobacillus from base malt.
- Pure cultures from sources like White Labs, Wyeast, The Yeast Bay, Omega Yeast Labs, etc.
- * For the adventuresome out there, you can also culture *Lactobacillus* from yogurt and probiotics!
- * IMO, "rolling the dice" w/ wild lacto is more fun!

Types of Lactobacillus

- 1. Homofermentative produces only lactic acid (e.g. Lactobacillus delbrueckii)
- 2. Heterofermentative both alcohol and lactic acid. (e.g. *Lactobacillus brevis*)
- * Hottenroth from The Bruery is fermented almost completely with heterofermentative *Lactobacillus*!

Lactic Acid

- A chemical compound with a clean, bright acidity that is both smooth and refreshing in beer.
- Lactic Acid Bacteria (LAB) such as *Lactobacillus* are responsible for favorites such as kimchi, <u>sauerkraut</u>, yogurt, and <u>sour</u>dough bread.
- * Sour!

Making a Wild Starter

- * Three days before sour mash.
- Create a "standard" starter.
 (I use 1L per 5 gal.)
- * Add 1/4 tsp 88% lactic acid per 1L.
- Cool below 120°F, add 1 cup base malt per 1L.
- Flush w/ CO2, cap with airlock. (Top off w/ carbonated water!)
- Keep between 104°F-111°F.
- * Strain, add to cooled mash/ wort.

Making a Cultured Starter

- * A day or two before sour mash.
- Create a "standard" starter. (No need to drop pH!)
- Chill starter to temperature listed in the Milk the Funk wiki. (<u>http://www.milkthefunk.com/wiki/Lactobacillus</u>)
- Pitch vial/ yogurt/ probiotic
 & cap with airlock.
 * If culturing *L. brevis*, cover with aluminum foil and stir it up.
- Pitch into to cooled mash/ wort.
 (Refer to Milk the Funk wiki)

Omega Lactobacillus Blend

- * Popular choice for cultured Lactobacillus.
- Blend of L. brevis and
 L. plantarum for wide active
 temperature range.
- * Sours well between 75°F-95°F.
- * Heterofermentative strains.

Our Enemies

Clostridium

- Active < ~100°F and pH > ~4.7 in anaerobic environments.
- Produces butyric acid, which tastes like rancid butter, vomit, and sweaty socks.
- Small amounts of butyric acid can be boiled out, but a bad infection is worth dumping.
- * Do everything you can to avoid Clostridium.

Indole Producing Bacteria

- * These bacteria include families such as *Citrobacter*, *Klebsiella*, *Enterobacter*, and *Escherichia*.
- Active pH > ~4.4 and are facultative anaerobes (oxygen neutral).
- Produce the chemical indole, a chemical which smells of feces.
- * Do everything you can to avoid indole producing bacteria.

Acetobacter

- Active < 86°F and pH > ~4.5 in aerobic environments.
- Produces acetic acid, aka vinegar, from alcohol and O2.
- All things considered, a small worry.

Mold

- * Aerobic surface fungus.
- Black and brightly colored molds are bad news, but other forms are can be harmless.
- You can just skim light mold colonies off the top, try not to think about it.

Three Tips To Success

- 1. Drop the pH < 4.5 ASAP.
- 2. Pitch lacto starter.
- 3. Cover surface with plastic wrap (blocking O2).
- * Once I started doing these three things I've never had even a hint of funk in my sour mashes.

Equipment Needed

- * Vessel for mash/ wort that is insulated or can be heated.
- * Plastic wrap.
- * Heat source.
 - * Reptile heater pad.
 - * Light bulb.
 - * Brew belt.
 - * Sous vide circulator.
 - * Hot water infusion (last resort, good for insulated coolers).

My Setup

Inexpensive Solutions

Fancy-Pants Solution

- Ve had good luck using a sous vide circulator to keep lacto starters and sour mashes at optimum temp.
- * You can use it to cook food!
- Full disclosure: Anova gave me one to test.

Recommended pH Meters

Milwaukee MW102 pH/ Temp Meter

Hach Pocket Pro+ pH Tester w/ Replaceable Sensor

Step 1) Mash As Usual

- This is exactly the same as every other mash you've done.
- Mash high or low as your recipe requires.
- * I've heard folks say they've had better success w/ thinner mash. (Anecdotal)

Step 2) Lower pH < 4.5

I use 1 TBSP 88% Lactic per 5 gal of mash or wort.

Step 3) Cool to ~110°F

Step 4) Pitch Lactobacillus starter

Step 5) Cover w/ Plastic Wrap + CO2

Step 6) Place in Warm/Insulated Place

Step 7) Check Progress

- Temp between100°F 110°F.
- Once a day or so taste a sample or check pH.
- Don't let O2 in!
- Looking for pH ~3.3.
- * 1-3 days.

Should You Continue?

- May look and smell a little gross/ funky, this is fine. (My first sour mash smelled like tomato soup)
- A good sour mesh smells"cleanly" sour.
- But! If it smells *a lot* like vomit or makes you want to vomit, you may not want to continue.
- * Some butyric acid will boil out or be scrubbed by fermentation.

When to Stop

- If you have a pH meter, many folks agree that a pH of
 3.3 or so is a good combo of tartness without preventing
 Saccharomyces from doing its job.
- Otherwise, just taste it: is it sour enough? Then stop!
 (Keep in mind it will seem more sour when fermented)

Warning!

- * A starting pH < 4.5 will typically eliminate risk of food poisoning, use caution when tasting the sour mash.
- * Only a low pH and the presence of alcohol can guarantee your fermented product is safe to drink.

Step 8) Finish Mash/Sparge

- Pellicle or mold may have formed, just skim it off.
- If only souring part of mash, add sour part back to regular mash (at end).
- * Sparge as usual.

Step 9) Boil Wort

* This will sterilize wort, making your ferment "clean" if you desire.

 Everything from here on requires your standard cold-side process.

Ways to Cheat

- * Add food-grade lactic acid to taste after fermentation.
- Add a significant portion (20%?) of acid malt.
 This could pose significant challenges to your mash, so add it at the end.
- * These methods are very 1-dimensional and are better used to juice brews that aren't quite sour enough.

Recipe: Berliner Weisse

- Wheat 50% / Pilsner 50%
 (100 % Wheat DME)
- * OG 1.032 / FG 1.004
- * Mash low $\leq 150^{\circ}F$
- * Sour mash to pH ~3.5 3.3

- * "Clean" yeast (WLP001, WLP011, WLP090 are good)
- * After sour mashing, boil 20 minutes to sterilize wort
- ~5 IBU (I like Warrior)

Two Mods

* Start with the Berliner Weisse recipe.

* Gose

In the boil add (per 5 finished gallons): 10 g salt 15 g coriander

Lichtenhainer

Replace pilsner malt with rauchmalt.

Recipe: Farmhouse

- * 85 % Pilsner / 10% Flaked Wheat / 5% Aromatic
- * OG 1.050 / FG 1.006 / 25 IBU
- Mash 146°F
- * Sour mash 50% of grist, add to main mash after conversion
- * 20 IBU Hallertauer @60 min / 5 IBU Hallertauer @10 min
- * WLP565 Belgian Saison I or Yeast Bay Wallonian Farmhouse
- Try aging on fruit!

Recipe: Summer Ale

- * 70 % 2-Row / 25 % Wheat / 5% Victory
- * OG 1.050 / FG 1.010 / 30 IBU
- Mash 153°F
- * Sour mash 25% of grist, add to main mash after conversion
- * 20 IBU Centennial @60 min / 10 IBU Centennial @10 min
- WLP090 San Diego Super

Questions?

Thanks!

